
 

 

Concurrency Control 
 

Physical constraints have resulted in frequency scaling being replaced by multi-processor 
architectures as the preferred future of hardware performance gains. If processor numbers 
increase then more parallel computations are required to maintain performance gains. Some 
problems may be trivially reflected in parallel solutions, yet many problems are not so easily 
solved in a parallel manner. For this reason, exploiting such architectures for increased 
performance and ensuring such solutions are free from error presents a substantial research 
challenge. 

Concurrency control regulates access to shared state and therefore plays an important role in 
parallel computation. However, such regulation is achievable at a cost:  

(1) Limiting overall progress - paths of execution are either blocked (hopefully 
temporarily) and/or their execution steps increased to afford coordination;  

(2) Lack of scalability - Increasing contention of shared state reduces overall progress as 
described in (1). 

(3) Increased likelihood of error - Programs may exhibit different interleaving of 
concurrent execution steps from one run to another, some of which may lead to 
unforeseen errors.  

The items listed above are taken as an unavoidable outcome of concurrency control. Research 
efforts are made to improve (1) and (2) by considering different coordination techniques. 
Easing the programing interface coupled with testing and formalism are used to tackle (3). 
Interestingly, increasing parallelism promotes the difficulties found in the three items listed as 
a lack of scalability hinders overall progress and gives rise to more unforeseen execution 
interleaving that must be verified/tested. 

1. The Dining Philosophers Example 
In the dining philosophers example there are forks interspersed equally amongst a number of 
seated philosophers. The number of philosophers is equal to the number of forks. A 
philosopher is required to hold two forks in order to eat (could be fork and knife, chopsticks). 
Sometimes a philosopher may think for a while before attempting to eat. As there are not 
enough forks for all philosophers to eat simultaneously, a philosopher must occasionally wait 
for a fork to become available. This may lead to deadlock if all philosophers hold the fork to 
their left (or right) hand at the same time. In addition, the scenario may lead to “starvation” if 
some philosophers continuously utilize forks while other philosophers persistently miss out 
on acquiring forks. Finally there is a chance of livelock if all the philosophers continuously 
repeated the action of picking up the left, or right, fork at equal time intervals. 
A concurrency control technique is required to ensure that events observable to philosophers 
(picking up and putting down forks) achieve a partial ordering that allows all philosophers to 
eat and none to starve. In essence, reads and writes that represent access to shared state must 
be ordered appropriately. In the dining philosophers example a read may assess the 
availability of a fork and a write changes a fork’s availability. If P is used to denote a dining 
philosopher then the ordering of their reads and writes to reflect an ability to eat would be: 
{Preadfork1 (available), Pwritefork1 (pick up), Preadfork2 (available), Pwritefork2 (pick up), 
Pwritefork1 (put down), Pwritefork2 (put down)}. The priority of concurrency control is to 
interleave such orderings so deadlock is avoided, livelock is avoided and nobody starves. 
2. Synchronization 
There are operational primitives in most modern hardware that trivialize the support of thread 
synchronization. Such primitives provide uninterruptable memory access/update. Compare-
and-swap (CAS) and load-linked/store-conditional (LL/SC) are two such mechanisms and 



may be used to construct controlled access to concurrent objects. Concurrent objects represent 
stateful programming constructs that multiple threads may attempt to access simultaneously.  
The correctness criteria associated to the concurrent history of an object may be reasoned 
about. Linearizability is a correctness criterion that states, “if one method call precedes 
another, then the earlier call must have taken effect before the later call”. This property 
provides the determinism needed to afford reasoned judgment on a program’s overall 
correctness. For example, if thread T1 places item x on a LIFO stack and then requests an item 
then one of two outcomes is possible: T1 receive x, or T1 receives something else (including 
null). “Something else” may occur if other threads had interacted with the stack in-between 
T1’s calls. Linearizability ensures that all threads involved in the creation of a concurrent 
history have mutually consistent behavior: the individual sequential histories of each thread 
are achievable given the overall linearizability of a concurrent object. Furthermore, 
linearizability is compositional in that if concurrent objects are linearizable then 
linearizability holds cumulatively across all such objects.  
Using linearizability and operational primitives the creation of concurrent objects regulating 
access via critical sections is possible. This can provide a lock-based approach to the creation 
of the read/write schedule for dining philosophers.  
As both forks are needed to eat in the dining philosophers problem a programmer may use 
mutual exclusion to ensure that a philosopher locks both forks. This can be trivially achieved 
by allowing a single lock to represent all forks present. The table itself is the concurrent 
object. Irrelevant of the number of philosophers there will be no deadlock or livelock as all 
the forks are either available or not available. In addition, we can enforce ordering to ensure 
philosophers take it in turn to eat and avoid starvation. However, assuming we want a 
concurrent solution we must allow philosophers to dine simultaneously when the opportunity 
arises. 
The greatest potential for concurrency is to have locks on a per-fork basis. This allows each 
fork to become a concurrent object to be used by the programmer in their solution. However, 
the programming skills required in deriving solutions that afford resource allocation to avoid 
deadlock, livelock and starvation are not trivial. Although linearizability may hold across the 
table of forks, linearizability alone does not prevent deadlock, livelock or starvation. 
Linearizability simply provisions deterministic behavior of the concurrent objects themselves. 
An alternative to locking and mutual exclusion would be to attempt a solution in a wait-free 
manner. A concurrent object is considered wait-free if all its calling methods finish in a finite 
number of steps. The more important quality is that of bounded wait-free, where the finite 
number of steps is bounded (and hopefully known). Wait-free solutions have the benefit of 
being free from deadlock. 
To enable the implementation of a wait-free object the problem of consensus must first be 
solved. Consensus, generally speaking, is agreement amongst participants on an item 
suggested by one or more of the participants. If consensus can be implemented in a wait-free 
manner for n participants (n is the consensus number) then it follows that wait-free concurrent 
objects may be constructed for n participants. This is an intuitive statement: if an algorithm 
can advance its state based on periodic consensus of deterministic threads in a determined 
number of steps then the overall algorithm exhibits determinism. Herlihy’s “wait-free 
hierarchy” indicates that operational primitives (CAS being one of them) may solve 
consensus for an infinite number of threads. A programmer can construct wait-free solutions 
for any concurrent object on most modern hardware infrastructures.  
Wait-free solutions are not the standard approach in many instances because their lock-based 
counterparts usually exhibit greater efficiency in terms of execution steps and memory usage 
(which rise as thread numbers rise). The conclusions of succinctly put this argument across: 
even though CAS and LL/SC may be appropriate for solving wait-free consensus, they are 
weak in terms of efficiency for most multi-valued objects. As such, non-blocking solutions 
are rarely attempted in practice.  



Irrelevant of the approach taken (e.g., locking, wait-free) and the skill of the programmer, 
there is one insurmountable difficulty when basing a solution completely on critical sections: 

• Concurrent objects are not composable in the context of programming logic. 
Although linearizability is compositional, this does not result in achieving the programmer’s 
intent. For example, if two linearizable bank account objects afforded the methods withdraw 
and deposit, one may want to ensure that a thread must withdraw money from one account 
and deposit the money in the other account without interference. If other threads could 
interferer then they could see both accounts with money missing and make incorrect 
assumptions of the cumulative value of the accounts.  

3. Optimism 
To allow context aware composability, concurrency control may be implemented in a manner 
similar to that used in databases. In a database, transactions ensure ACID properties are 
maintained in the presence of conflicted read/writes. In software this approach is embodied 
within transactional memory. A programmer identifies a number of execution steps that must 
be achieved atomically. As these steps may span a number of concurrent objects we can 
implement the earlier bank account example with no difficulty.  
Serializability is the correctness criteria most often cited for databases. However, the stronger 
correctness criteria linearizability is commonly used within transactional memory (there are 
others, e.g.,). In principle, a read/write schedule on shared state is constructed not explicitly 
by the programmer via synchronization primitives, but by the transactional sub-system. 
The optimistic approach is popular in transactional memory as it allows shared state to be 
enacted upon simultaneously. The optimistic approach advocates that threads may proceed 
with local copies of shared state. However, they may not be capable of committing changes to 
the actual shared state due to the actions of other transactions. Transactions unable to commit 
will be aborted. Those transactions that are committed maintain a linearizable read/write 
schedule. Aborted transactions may retry at a later date (but may be aborted again). 
In the dining philosophers problem the complete act of dining (pick up both forks, eat, put 
down both forks) can be encapsulated within a single transaction and attempted in succession 
by a philosopher. Linearizability would ensure that the schedule of reads and writes would be 
adhered to. Deadlock would be avoided as those diners who have eaten but couldn’t commit 
this act to the schedule would be rolled back and attempt to eat again (they didn’t really eat). 
If a more pessimistic transactional approach was employed a philosopher could be rolled back 
earlier in their transaction (identifying possible conflicts in the schedule earlier in the dining 
process). Transactions would allow concurrency as diners not sharing forks could proceed in 
parallel and there is no need for the programmer to be concerned with deadlock or livelock. 
Using transactions alone would not prevent starvation because there is no guarantee that 
philosophers would be able to dine (their transactions may be rolled back more frequently 
than others). Therefore, many solutions that utilize software transactional memory in their 
approaches do propose a number of techniques to alleviate this issue of contention 
management (e.g., passive, polite, karma, greedy).  
A transactional approach has many benefits over a solution based only on mutual exclusion. 
They are composable in that the correctness criteria together with appropriate contention 
management scheme are sufficiently general to be almost universally applicable. This allows 
the programmer to construct complex parallel solution without programming problem-centric 
solutions based on mutual exclusion. However, they do have drawbacks.  
The major drawback of transactional approaches is the construction of the read/write schedule 
in a delayed manner. Transactions that rollback hinder forward progress of their threads 
(philosopher would eat, but then be told they hadn’t eaten really). In the context of a program 
execution, it may be that some threads could have committed even if linearizability was 
invalidated by such a transaction (particularly the case for longer transactions). In addition, 
the schedule creation process itself may not be a scalable act if transaction numbers rise on a 
contended data item (also a problem with blocking and wait-free approaches). Finally, 



programmer determined synchronization of threads is available only at the granularity of a 
transaction, promoting the use of long-lived transactions (which have a higher chance of 
rollback). For example, if a programmer requires two functions to be applied in sequence and 
without interference to one million instances of a concurrent object then this must be 
combined within one transaction.  
4. Summary 
In one sense the summary to this area is that we just can’t create suitable concurrency control 
mechanisms without limiting the parallel execution present in a system. Concurrency control 
is difficult to understand and is a major difficulty for all programmers. Look through the 
literature listed in the bibliography used to write this brief overview and you will discover just 
how tricky this area of research is. 
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